86 research outputs found

    Identification of functional genetic variation in exome sequence analysis

    Get PDF
    Recent technological advances have allowed us to study individual genomes at a base-pair resolution and have demonstrated that the average exome harbors more than 15,000 genetic variants. However, our ability to understand the biological significance of the identified variants and to connect these observed variants with phenotypes is limited. The first step in this process is to identify genetic variation that is likely to result in changes to protein structure and function, because detailed studies, either population based or functional, for each of the identified variants are not practicable. Therefore algorithms that yield valid predictions of a variant’s functional significance are needed. Over the past decade, several programs have been developed to predict the probability that an observed sequence variant will have a deleterious effect on protein function. These algorithms range from empirical programs that classify using known biochemical properties to statistical algorithms trained using a variety of data sources, including sequence conservation data, biochemical properties, and functional data. Using data from the pilot3 study of the 1000 Genomes Project available through Genetic Analysis Workshop 17, we compared the results of four programs (SIFT, PolyPhen, MAPP, and VarioWatch) used to predict the functional relevance of variants in 101 genes. Analysis was conducted without knowledge of the simulation model. Agreement between programs was modest ranging from 59.4% to 71.4% and only 3.5% of variants were classified as deleterious and 10.9% as tolerated across all four programs

    Construction of large-volume tissue mimics with 3D functional vascular networks

    Get PDF
    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture.ope

    Suppression of Methylation-Mediated Transcriptional Gene Silencing by βC1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection

    Get PDF
    DNA methylation is a fundamental epigenetic modification that regulates gene expression and represses endogenous transposons and invading DNA viruses. As a counter-defense, the geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Some geminiviruses have acquired a betasatellite called DNA β. This study presents evidence that suppression of methylation-mediated TGS by the sole betasatellite-encoded protein, βC1, is crucial to the association of Tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB). We show that TYLCCNB complements Beet curly top virus (BCTV) L2- mutants deficient for methylation inhibition and TGS suppression, and that cytosine methylation levels in BCTV and TYLCCNV genomes, as well as the host genome, are substantially reduced by TYLCCNB or βC1 expression. We also demonstrate that while TYLCCNB or βC1 expression can reverse TGS, TYLCCNV by itself is ineffective. Thus its AC2/AL2 protein, known to have suppression activity in other geminiviruses, is likely a natural mutant in this respect. A yeast two-hybrid screen of candidate proteins, followed by bimolecular fluorescence complementation analysis, revealed that βC1 interacts with S-adenosyl homocysteine hydrolase (SAHH), a methyl cycle enzyme required for TGS. We further demonstrate that βC1 protein inhibits SAHH activity in vitro. That βC1 and other geminivirus proteins target the methyl cycle suggests that limiting its product, S-adenosyl methionine, may be a common viral strategy for methylation interference. We propose that inhibition of methylation and TGS by βC1 stabilizes geminivirus/betasatellite complexes

    Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

    Get PDF
    Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Disaggregases, molecular chaperones that resolubilize protein aggregates

    Full text link
    corecore